3.265 \(\int \frac{\sqrt{x} (A+B x^2)}{(b x^2+c x^4)^{3/2}} \, dx\)

Optimal. Leaf size=167 \[ \frac{x \left (\sqrt{b}+\sqrt{c} x\right ) \sqrt{\frac{b+c x^2}{\left (\sqrt{b}+\sqrt{c} x\right )^2}} (3 b B-5 A c) \text{EllipticF}\left (2 \tan ^{-1}\left (\frac{\sqrt [4]{c} \sqrt{x}}{\sqrt [4]{b}}\right ),\frac{1}{2}\right )}{6 b^{9/4} \sqrt [4]{c} \sqrt{b x^2+c x^4}}+\frac{x^{3/2} (3 b B-5 A c)}{3 b^2 \sqrt{b x^2+c x^4}}-\frac{2 A}{3 b \sqrt{x} \sqrt{b x^2+c x^4}} \]

[Out]

(-2*A)/(3*b*Sqrt[x]*Sqrt[b*x^2 + c*x^4]) + ((3*b*B - 5*A*c)*x^(3/2))/(3*b^2*Sqrt[b*x^2 + c*x^4]) + ((3*b*B - 5
*A*c)*x*(Sqrt[b] + Sqrt[c]*x)*Sqrt[(b + c*x^2)/(Sqrt[b] + Sqrt[c]*x)^2]*EllipticF[2*ArcTan[(c^(1/4)*Sqrt[x])/b
^(1/4)], 1/2])/(6*b^(9/4)*c^(1/4)*Sqrt[b*x^2 + c*x^4])

________________________________________________________________________________________

Rubi [A]  time = 0.272043, antiderivative size = 167, normalized size of antiderivative = 1., number of steps used = 5, number of rules used = 5, integrand size = 28, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.179, Rules used = {2038, 2023, 2032, 329, 220} \[ \frac{x^{3/2} (3 b B-5 A c)}{3 b^2 \sqrt{b x^2+c x^4}}+\frac{x \left (\sqrt{b}+\sqrt{c} x\right ) \sqrt{\frac{b+c x^2}{\left (\sqrt{b}+\sqrt{c} x\right )^2}} (3 b B-5 A c) F\left (2 \tan ^{-1}\left (\frac{\sqrt [4]{c} \sqrt{x}}{\sqrt [4]{b}}\right )|\frac{1}{2}\right )}{6 b^{9/4} \sqrt [4]{c} \sqrt{b x^2+c x^4}}-\frac{2 A}{3 b \sqrt{x} \sqrt{b x^2+c x^4}} \]

Antiderivative was successfully verified.

[In]

Int[(Sqrt[x]*(A + B*x^2))/(b*x^2 + c*x^4)^(3/2),x]

[Out]

(-2*A)/(3*b*Sqrt[x]*Sqrt[b*x^2 + c*x^4]) + ((3*b*B - 5*A*c)*x^(3/2))/(3*b^2*Sqrt[b*x^2 + c*x^4]) + ((3*b*B - 5
*A*c)*x*(Sqrt[b] + Sqrt[c]*x)*Sqrt[(b + c*x^2)/(Sqrt[b] + Sqrt[c]*x)^2]*EllipticF[2*ArcTan[(c^(1/4)*Sqrt[x])/b
^(1/4)], 1/2])/(6*b^(9/4)*c^(1/4)*Sqrt[b*x^2 + c*x^4])

Rule 2038

Int[((e_.)*(x_))^(m_.)*((a_.)*(x_)^(j_.) + (b_.)*(x_)^(jn_.))^(p_)*((c_) + (d_.)*(x_)^(n_.)), x_Symbol] :> Sim
p[(c*e^(j - 1)*(e*x)^(m - j + 1)*(a*x^j + b*x^(j + n))^(p + 1))/(a*(m + j*p + 1)), x] + Dist[(a*d*(m + j*p + 1
) - b*c*(m + n + p*(j + n) + 1))/(a*e^n*(m + j*p + 1)), Int[(e*x)^(m + n)*(a*x^j + b*x^(j + n))^p, x], x] /; F
reeQ[{a, b, c, d, e, j, p}, x] && EqQ[jn, j + n] &&  !IntegerQ[p] && NeQ[b*c - a*d, 0] && GtQ[n, 0] && (LtQ[m
+ j*p, -1] || (IntegersQ[m - 1/2, p - 1/2] && LtQ[p, 0] && LtQ[m, -(n*p) - 1])) && (GtQ[e, 0] || IntegersQ[j,
n]) && NeQ[m + j*p + 1, 0] && NeQ[m - n + j*p + 1, 0]

Rule 2023

Int[((c_.)*(x_))^(m_.)*((a_.)*(x_)^(j_.) + (b_.)*(x_)^(n_.))^(p_), x_Symbol] :> -Simp[(c^(j - 1)*(c*x)^(m - j
+ 1)*(a*x^j + b*x^n)^(p + 1))/(a*(n - j)*(p + 1)), x] + Dist[(c^j*(m + n*p + n - j + 1))/(a*(n - j)*(p + 1)),
Int[(c*x)^(m - j)*(a*x^j + b*x^n)^(p + 1), x], x] /; FreeQ[{a, b, c, m}, x] &&  !IntegerQ[p] && LtQ[0, j, n] &
& (IntegersQ[j, n] || GtQ[c, 0]) && LtQ[p, -1]

Rule 2032

Int[((c_.)*(x_))^(m_.)*((a_.)*(x_)^(j_.) + (b_.)*(x_)^(n_.))^(p_), x_Symbol] :> Dist[(c^IntPart[m]*(c*x)^FracP
art[m]*(a*x^j + b*x^n)^FracPart[p])/(x^(FracPart[m] + j*FracPart[p])*(a + b*x^(n - j))^FracPart[p]), Int[x^(m
+ j*p)*(a + b*x^(n - j))^p, x], x] /; FreeQ[{a, b, c, j, m, n, p}, x] &&  !IntegerQ[p] && NeQ[n, j] && PosQ[n
- j]

Rule 329

Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> With[{k = Denominator[m]}, Dist[k/c, Subst[I
nt[x^(k*(m + 1) - 1)*(a + (b*x^(k*n))/c^n)^p, x], x, (c*x)^(1/k)], x]] /; FreeQ[{a, b, c, p}, x] && IGtQ[n, 0]
 && FractionQ[m] && IntBinomialQ[a, b, c, n, m, p, x]

Rule 220

Int[1/Sqrt[(a_) + (b_.)*(x_)^4], x_Symbol] :> With[{q = Rt[b/a, 4]}, Simp[((1 + q^2*x^2)*Sqrt[(a + b*x^4)/(a*(
1 + q^2*x^2)^2)]*EllipticF[2*ArcTan[q*x], 1/2])/(2*q*Sqrt[a + b*x^4]), x]] /; FreeQ[{a, b}, x] && PosQ[b/a]

Rubi steps

\begin{align*} \int \frac{\sqrt{x} \left (A+B x^2\right )}{\left (b x^2+c x^4\right )^{3/2}} \, dx &=-\frac{2 A}{3 b \sqrt{x} \sqrt{b x^2+c x^4}}-\frac{\left (2 \left (-\frac{3 b B}{2}+\frac{5 A c}{2}\right )\right ) \int \frac{x^{5/2}}{\left (b x^2+c x^4\right )^{3/2}} \, dx}{3 b}\\ &=-\frac{2 A}{3 b \sqrt{x} \sqrt{b x^2+c x^4}}+\frac{(3 b B-5 A c) x^{3/2}}{3 b^2 \sqrt{b x^2+c x^4}}+\frac{(3 b B-5 A c) \int \frac{\sqrt{x}}{\sqrt{b x^2+c x^4}} \, dx}{6 b^2}\\ &=-\frac{2 A}{3 b \sqrt{x} \sqrt{b x^2+c x^4}}+\frac{(3 b B-5 A c) x^{3/2}}{3 b^2 \sqrt{b x^2+c x^4}}+\frac{\left ((3 b B-5 A c) x \sqrt{b+c x^2}\right ) \int \frac{1}{\sqrt{x} \sqrt{b+c x^2}} \, dx}{6 b^2 \sqrt{b x^2+c x^4}}\\ &=-\frac{2 A}{3 b \sqrt{x} \sqrt{b x^2+c x^4}}+\frac{(3 b B-5 A c) x^{3/2}}{3 b^2 \sqrt{b x^2+c x^4}}+\frac{\left ((3 b B-5 A c) x \sqrt{b+c x^2}\right ) \operatorname{Subst}\left (\int \frac{1}{\sqrt{b+c x^4}} \, dx,x,\sqrt{x}\right )}{3 b^2 \sqrt{b x^2+c x^4}}\\ &=-\frac{2 A}{3 b \sqrt{x} \sqrt{b x^2+c x^4}}+\frac{(3 b B-5 A c) x^{3/2}}{3 b^2 \sqrt{b x^2+c x^4}}+\frac{(3 b B-5 A c) x \left (\sqrt{b}+\sqrt{c} x\right ) \sqrt{\frac{b+c x^2}{\left (\sqrt{b}+\sqrt{c} x\right )^2}} F\left (2 \tan ^{-1}\left (\frac{\sqrt [4]{c} \sqrt{x}}{\sqrt [4]{b}}\right )|\frac{1}{2}\right )}{6 b^{9/4} \sqrt [4]{c} \sqrt{b x^2+c x^4}}\\ \end{align*}

Mathematica [C]  time = 0.0491973, size = 92, normalized size = 0.55 \[ \frac{x^2 \sqrt{\frac{c x^2}{b}+1} (3 b B-5 A c) \, _2F_1\left (\frac{1}{4},\frac{1}{2};\frac{5}{4};-\frac{c x^2}{b}\right )-2 A b-5 A c x^2+3 b B x^2}{3 b^2 \sqrt{x} \sqrt{x^2 \left (b+c x^2\right )}} \]

Antiderivative was successfully verified.

[In]

Integrate[(Sqrt[x]*(A + B*x^2))/(b*x^2 + c*x^4)^(3/2),x]

[Out]

(-2*A*b + 3*b*B*x^2 - 5*A*c*x^2 + (3*b*B - 5*A*c)*x^2*Sqrt[1 + (c*x^2)/b]*Hypergeometric2F1[1/4, 1/2, 5/4, -((
c*x^2)/b)])/(3*b^2*Sqrt[x]*Sqrt[x^2*(b + c*x^2)])

________________________________________________________________________________________

Maple [A]  time = 0.02, size = 235, normalized size = 1.4 \begin{align*} -{\frac{c{x}^{2}+b}{6\,{b}^{2}c}{x}^{{\frac{3}{2}}} \left ( 5\,A\sqrt{{\frac{cx+\sqrt{-bc}}{\sqrt{-bc}}}}\sqrt{2}\sqrt{{\frac{-cx+\sqrt{-bc}}{\sqrt{-bc}}}}\sqrt{-{\frac{cx}{\sqrt{-bc}}}}{\it EllipticF} \left ( \sqrt{{\frac{cx+\sqrt{-bc}}{\sqrt{-bc}}}},1/2\,\sqrt{2} \right ) \sqrt{-bc}xc-3\,B\sqrt{{\frac{cx+\sqrt{-bc}}{\sqrt{-bc}}}}\sqrt{2}\sqrt{{\frac{-cx+\sqrt{-bc}}{\sqrt{-bc}}}}\sqrt{-{\frac{cx}{\sqrt{-bc}}}}{\it EllipticF} \left ( \sqrt{{\frac{cx+\sqrt{-bc}}{\sqrt{-bc}}}},1/2\,\sqrt{2} \right ) \sqrt{-bc}xb+10\,A{x}^{2}{c}^{2}-6\,B{x}^{2}bc+4\,Abc \right ) \left ( c{x}^{4}+b{x}^{2} \right ) ^{-{\frac{3}{2}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((B*x^2+A)*x^(1/2)/(c*x^4+b*x^2)^(3/2),x)

[Out]

-1/6/(c*x^4+b*x^2)^(3/2)*x^(3/2)*(c*x^2+b)*(5*A*((c*x+(-b*c)^(1/2))/(-b*c)^(1/2))^(1/2)*2^(1/2)*((-c*x+(-b*c)^
(1/2))/(-b*c)^(1/2))^(1/2)*(-x*c/(-b*c)^(1/2))^(1/2)*EllipticF(((c*x+(-b*c)^(1/2))/(-b*c)^(1/2))^(1/2),1/2*2^(
1/2))*(-b*c)^(1/2)*x*c-3*B*((c*x+(-b*c)^(1/2))/(-b*c)^(1/2))^(1/2)*2^(1/2)*((-c*x+(-b*c)^(1/2))/(-b*c)^(1/2))^
(1/2)*(-x*c/(-b*c)^(1/2))^(1/2)*EllipticF(((c*x+(-b*c)^(1/2))/(-b*c)^(1/2))^(1/2),1/2*2^(1/2))*(-b*c)^(1/2)*x*
b+10*A*x^2*c^2-6*B*x^2*b*c+4*A*b*c)/c/b^2

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (B x^{2} + A\right )} \sqrt{x}}{{\left (c x^{4} + b x^{2}\right )}^{\frac{3}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((B*x^2+A)*x^(1/2)/(c*x^4+b*x^2)^(3/2),x, algorithm="maxima")

[Out]

integrate((B*x^2 + A)*sqrt(x)/(c*x^4 + b*x^2)^(3/2), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{\sqrt{c x^{4} + b x^{2}}{\left (B x^{2} + A\right )} \sqrt{x}}{c^{2} x^{8} + 2 \, b c x^{6} + b^{2} x^{4}}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((B*x^2+A)*x^(1/2)/(c*x^4+b*x^2)^(3/2),x, algorithm="fricas")

[Out]

integral(sqrt(c*x^4 + b*x^2)*(B*x^2 + A)*sqrt(x)/(c^2*x^8 + 2*b*c*x^6 + b^2*x^4), x)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sqrt{x} \left (A + B x^{2}\right )}{\left (x^{2} \left (b + c x^{2}\right )\right )^{\frac{3}{2}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((B*x**2+A)*x**(1/2)/(c*x**4+b*x**2)**(3/2),x)

[Out]

Integral(sqrt(x)*(A + B*x**2)/(x**2*(b + c*x**2))**(3/2), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (B x^{2} + A\right )} \sqrt{x}}{{\left (c x^{4} + b x^{2}\right )}^{\frac{3}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((B*x^2+A)*x^(1/2)/(c*x^4+b*x^2)^(3/2),x, algorithm="giac")

[Out]

integrate((B*x^2 + A)*sqrt(x)/(c*x^4 + b*x^2)^(3/2), x)